# 4 equivalent fractions for 21/18

### Equivalent Fractions Calculator

### Quote of the day ...

Here is the answer to questions like: 4 equivalent fractions for 21/18 or What numbers are equivalent to 21/18?

This Equivalent Fractions Calculator will show you, step-by-step, equivalent fractions to any fraction you input.

See below the step-by-step solution on how to find equivalent fractions.

## How to find equivalent fractions?

Two fractions are equivalent when they are both equal when written in lowest terms. The fraction 4236 is equal to 76 when reduced to lowest terms. To find equivalent fractions, you just need to multiply the numerator and denominator of that reduced fraction (76) by the same integer number, ie, multiply by 2, 3, 4, 5, 6 ...

**1412**is equivalent to 2118 because 7 x 2 = 14 and 6 x 2 = 12

and so on ...

At a glance, equivalent fractions look different, but if you reduce then to the lowest terms you will get the same value showing that they are equivalent. If a given fraction is not reduced to lowest terms, you can find other equivalent fractions by dividing both numerator and denominator by the same number.

## What is an equivalent fraction? How to know if two fractions are equivalent?

Finding equivalent fractions can be ease if you use this rule:

Equivalent fractions definition:* two fractions ab and cd are equivalent only if the product (multiplication) of the numerator (a) of the first fraction and the denominator (d) of the other fraction is equal to the product of the denominator (b) of the first fraction and the numerator (c) of the other fraction.*

In other words, if you cross-multiply (ab and cd) the equality will remain, i.e, a.d = b.c. So, here are some examples:

**76**is equivalent to 2118 because 7 x 18 = 6 x 21 = 126**1412**is equivalent to 2118 because 14 x 18 = 12 x 21 = 252**2824**is equivalent to 2118 because 28 x 18 = 24 x 21 = 504

## Equivalent Fractions Table / Chart

This Equivalent Fractions Table/Chart contains common practical fractions. You can easily convert from fraction to decimal, as well as, from fractions of inches to millimeters.

^{1}/_{64} |
^{1}/_{32} |
^{1}/_{16} |
^{1}/_{8} |
^{1}/_{4} |
^{1}/_{2} |
Decimal | mm |
---|---|---|---|---|---|---|---|

^{1}/_{64} |
0.015625 | 0.397 | |||||

^{2}/_{64} |
^{1}/_{32} |
0.03125 | 0.794 | ||||

^{3}/_{64} |
0.046875 | 1.191 | |||||

^{4}/_{64} |
^{2}/_{32} |
^{1}/_{16} |
0.0625 | 1.588 | |||

^{5}/_{64} |
0.078125 | 1.984 | |||||

^{6}/_{64} |
^{3}/_{32} |
0.09375 | 2.381 | ||||

^{7}/_{64} |
0.109375 | 2.778 | |||||

^{8}/_{64} |
^{4}/_{32} |
^{2}/_{16} |
^{1}/_{8} |
0.125 | 3.175 | ||

^{9}/_{64} |
0.140625 | 3.572 | |||||

^{10}/_{64} |
^{5}/_{32} |
0.15625 | 3.969 | ||||

^{11}/_{64} |
0.171875 | 4.366 | |||||

^{12}/_{64} |
^{6}/_{32} |
^{3}/_{16} |
0.1875 | 4.763 | |||

^{13}/_{64} |
0.203125 | 5.159 | |||||

^{14}/_{64} |
^{7}/_{32} |
0.21875 | 5.556 | ||||

^{15}/_{64} |
0.234375 | 5.953 | |||||

^{16}/_{64} |
^{8}/_{32} |
^{4}/_{16} |
^{2}/_{8} |
^{1}/_{4} |
0.25 | 6.35 | |

^{17}/_{64} |
0.265625 | 6.747 | |||||

^{18}/_{64} |
^{9}/_{32} |
0.28125 | 7.144 | ||||

^{19}/_{64} |
0.296875 | 7.541 | |||||

^{20}/_{64} |
^{10}/_{32} |
^{5}/_{16} |
0.3125 | 7.938 | |||

^{21}/_{64} |
0.328125 | 8.334 | |||||

^{22}/_{64} |
^{11}/_{32} |
0.34375 | 8.731 | ||||

^{23}/_{64} |
0.359375 | 9.128 | |||||

^{24}/_{64} |
^{12}/_{32} |
^{6}/_{16} |
^{3}/_{8} |
0.375 | 9.525 | ||

^{25}/_{64} |
0.390625 | 9.922 | |||||

^{26}/_{64} |
^{13}/_{32} |
0.40625 | 10.319 | ||||

^{27}/_{64} |
0.421875 | 10.716 | |||||

^{28}/_{64} |
^{14}/_{32} |
^{7}/_{16} |
0.4375 | 11.113 | |||

^{29}/_{64} |
0.453125 | 11.509 | |||||

^{30}/_{64} |
^{15}/_{32} |
0.46875 | 11.906 | ||||

^{31}/_{64} |
0.484375 | 12.303 | |||||

^{32}/_{64} |
^{16}/_{32} |
^{8}/_{16} |
^{4}/_{8} |
^{2}/_{4} |
^{1}/_{2} |
0.5 | 12.7 |

^{33}/_{64} |
0.515625 | 13.097 | |||||

^{34}/_{64} |
^{17}/_{32} |
0.53125 | 13.494 | ||||

^{35}/_{64} |
0.546875 | 13.891 | |||||

^{36}/_{64} |
^{18}/_{32} |
^{9}/_{16} |
0.5625 | 14.288 | |||

^{37}/_{64} |
0.578125 | 14.684 | |||||

^{38}/_{64} |
^{19}/_{32} |
0.59375 | 15.081 | ||||

^{39}/_{64} |
0.609375 | 15.478 | |||||

^{40}/_{64} |
^{20}/_{32} |
^{10}/_{16} |
^{5}/_{8} |
0.625 | 15.875 | ||

^{41}/_{64} |
0.640625 | 16.272 | |||||

^{42}/_{64} |
^{21}/_{32} |
0.65625 | 16.669 | ||||

^{43}/_{64} |
0.671875 | 17.066 | |||||

^{44}/_{64} |
^{22}/_{32} |
^{11}/_{16} |
0.6875 | 17.463 | |||

^{45}/_{64} |
0.703125 | 17.859 | |||||

^{46}/_{64} |
^{23}/_{32} |
0.71875 | 18.256 | ||||

^{47}/_{64} |
0.734375 | 18.653 | |||||

^{48}/_{64} |
^{24}/_{32} |
^{12}/_{16} |
^{6}/_{8} |
^{3}/_{4} |
0.75 | 19.05 | |

^{49}/_{64} |
0.765625 | 19.447 | |||||

^{50}/_{64} |
^{25}/_{32} |
0.78125 | 19.844 | ||||

^{51}/_{64} |
0.796875 | 20.241 | |||||

^{52}/_{64} |
^{26}/_{32} |
^{13}/_{16} |
0.8125 | 20.638 | |||

^{53}/_{64} |
0.828125 | 21.034 | |||||

^{54}/_{64} |
^{27}/_{32} |
0.84375 | 21.431 | ||||

^{55}/_{64} |
0.859375 | 21.828 | |||||

^{56}/_{64} |
^{28}/_{32} |
^{14}/_{16} |
^{7}/_{8} |
0.875 | 22.225 | ||

^{57}/_{64} |
0.890625 | 22.622 | |||||

^{58}/_{64} |
^{29}/_{32} |
0.90625 | 23.019 | ||||

^{59}/_{64} |
0.921875 | 23.416 | |||||

^{60}/_{64} |
^{30}/_{32} |
^{15}/_{16} |
0.9375 | 23.813 | |||

^{61}/_{64} |
0.953125 | 24.209 | |||||

^{62}/_{64} |
^{31}/_{32} |
0.96875 | 24.606 | ||||

^{63}/_{64} |
0.984375 | 25.003 | |||||

^{64}/_{64} |
^{32}/_{32} |
^{16}/_{16} |
^{8}/_{8} |
^{4}/_{4} |
^{2}/_{2} |
1 | 25.4 |